

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 693 (2008) 1283-1291

www.elsevier.com/locate/jorganchem

Reactions of trimethylsiloxychlorosilanes with lithium metal – On the mechanism of the formation of trimethylsiloxysilyllithium compounds LiSiRR'(OSiMe₃)

Joerg Harloff, Eckhard Popowski*

Institut für Chemie der Universität Rostock, Albert-Einstein-Straße 3a, D-18051 Rostock, Germany

Received 18 October 2007; received in revised form 8 January 2008; accepted 14 January 2008 Available online 19 January 2008

Abstract

The reaction pathway for the formation of the trimethylsiloxysilyllithium compounds (Me₃SiO)RR'SiLi (**2a**: R = Et, **2b**: R = ^{*i*}Pr, **2c**: R = 2,4,6-Me₃C₆H₂ (Mes); **2a**-c: R' = Ph; **2d**: R = R' = Mes) starting from the conversion of the corresponding trimethylsiloxychlorosilanes (Me₃SiO)RR'SiCl (**1a**-d) in the presence of excess lithium in a mixture of THF/diethyl ether/*n*-pentane at -110 °C was investigated.

The trimethylsiloxychlorosilanes (Me₃SiO)RPhSiCl (**1a**: R = Et, **1b**: $R = {}^{i}Pr$, **1c**: R = Mes) react with lithium to give initially the trimethylsiloxysilyllithium compounds (Me₃SiO)RPhSiLi (**2a**–c). These siloxysilyllithiums **2** couple partially with more trimethylsiloxychlorosilanes **1** to produce the siloxydisilanes (Me₃SiO)RPhSi–SiPhR(OSiMe₃) (**Ia**–c), and they undergo bimolecular self-condensation affording the trimethylsiloxydisilanyllithium compounds (Me₃SiO)RPhSi–RPhSiLi (**3a**–c). The siloxydisilanes **I** are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me₃SiO)RPhSi–RPhSiLi (**3**–c). The siloxydisilanes (Me₃SiO)RPhSi–RPhSiLi (**3**–c). The siloxydisilanes **I** are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me₃SiO)RPhSi–RPhSiLi (**2**). In the case of the two trimethylsiloxydisilanyllithiums (Me₃SiO)RPhSi–RPhSiLi (**3**=. Et, **3b**: $R = {}^{i}Pr$) a reaction with more trimethylsiloxychlorosilanes (Me₃SiO)RPhSiCl (**1a**, **1b**) takes place under formation of siloxytrisilanes (Me₃SiO)RPhSi–RPhSi–SiPhR(OSiMe₃) (**Ia**: R = Et, **Ib**: $R = {}^{i}Pr$) which are cleaved by lithium to yield the trimethylsiloxysilyllithiums (Me₃SiO)RPhSiLi (**2a**, **2b**) and the trimethylsiloxydisilanyllithiums (Me₃SiO)RPhSi–RPhSiLi (**3a**, **3b**). The dimesityl-trimethylsiloxy-silyllithium (Me₃SiO)Mes₂SiLi (**2d**) was obtained directly by reaction of the trimethylsiloxy-silyllithium compounds (Me₃SiO)RPhSi–SiPhS

Keywords: Disilanes; Trisilanes; Si-Si bond cleavage; Trimethylsiloxysilyllithiums; Mechanism of formation

1. Introduction

Organosilyllithium compounds are versatile reagents in synthetic organic and organometallic chemistry. Syntheses, properties and reactivity of the organosilyllithium compounds and of the other alkali metal derivatives of organosilicon compounds have been subject of several reviews [1–12]. The most convenient method for the preparation of triorganosilyllithium compounds RR'(aryl)SiLi

with at least one aryl substituent on the silicon atom is the reaction of the corresponding chlorosilanes RR'(aryl) SiCl with lithium metal [1,6,10,11,13–15]. The functionalised silyllithium compounds (H)Ph₂SiLi [16], (H)Mes₂SiLi [17,18]; (Et₂N)_n- Ph_{3-n}SiLi (n = 1, 2), (Et₂N)MePhSiLi [7,9–11,19,20]; ('BuO)₂PhSiLi [7,9–11,21], [(Me₃Si)₂N]-Me_{2-n}Ph_nSiLi (n = 1, 2) [22]; (Me₃SiO)RPhSiLi (R = Me, Et, ⁱPr, ⁱBu, Ph, Mes, Tip; Mes = 2,4,6-Me₃C₆H₂, Tip = 2,4,6-(Me₂CH)₃C₆- H₂) and (Me₃SiO)Mes₂SiLi [23,24] can be also synthesised by this method.

In the reactions of the trimethylsiloxychlorosilanes (Me₃SiO)RPhSiCl (R = Me, Et, ^{*i*}Pr, ^{*t*}Bu, Ph, Mes) with lithium metal in THF at -78 °C and in a mixture of

 $^{^{*}}$ Corresponding author. Tel.: + 49 381 498 6380; fax: + 49 381 498 6382.

E-mail address: eckhard.popowski@uni-rostock.de (E. Popowski).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.01.023

THF/diethyl ether/*n*-pentane (volume ratio 4:1:1) at -110 °C (Trapp mixture) the silyllithium derivatives (Me₃SiO)RPhSiLi, Me₃SiO(RPhSi)₂Li and Me₃SiRPhSiLi have been obtained [23,24]. The stability of the trimethylsiloxysilyllithiums (Me₃SiO)RPhSiLi is higher at -110 °C than at -78 °C. The trimethylsiloxydisilanyllithiums (Me₃SiO)RPhSiLi are formed by bimolecular self-condensation of trimethylsiloxysilyllithiums (Eq. (1)).

$$\begin{array}{c} \underset{l}{\overset{R}{\underset{l}{\operatorname{Me}_{3}}\operatorname{SiO}}} & \underset{l}{\overset{R}{\underset{l}{\operatorname{Ne}_{3}}}} \overset{-78 \ C}{\underset{l}{\operatorname{Ne}_{3}}} & \underset{l}{\overset{R}{\underset{l}{\operatorname{Ne}_{3}}}} \overset{-78 \ C}{\underset{l}{\operatorname{Ne}_{3}}} & \underset{l}{\overset{R}{\underset{l}{\operatorname{Ne}_{3}}}} \overset{R}{\underset{l}{\operatorname{Ne}_{3}}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{l}{\operatorname{Ne}_{3}}} \overset{R}{\underset{Ne}_{3}}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{Ne}_{3}}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{Ne}_{3}}} \overset{R}{\underset{Ne}_{3}} \overset{R}{\underset{Ne}_{$$

The trimethylsiloxysilyllithiums (Me_3SiO)TipPhSiLi and (Me_3SiO)Mes_2SiLi do not undergo such a self-condensation.

Except for 'Bu₃SiLi [8,25] the peralkylated silyllithium compounds cannot be prepared by reaction of the corresponding chlorosilanes with lithium metal [6,7,10,11]. The attack of the chlorosilanes R₃SiCl (R = alkyl except 'Bu) on lithium metal affords the homocoupling products only, i.e. the disilanes R₃Si–SiR₃. Similarly, the alkyl(amino) chlorosilanes (Et₂N)_nR_{3-n}SiCl (n = 1, 2; R = alkyl) [26] and [(Me₃Si)₂N]Me₂SiCl [22] as well as the trimethylsiloxychlorosilane (Me₃SiO)Me₂SiCl [23] undergo only homocoupling reactions with lithium to give the corresponding symmetrical disilanes.

Although the reductive lithiation of chlorosilanes is widely used for the synthesis of aryl-containing silyllithium compounds [overview in Refs. 2,6,7,10,11], the course of reaction has been investigated only occasionally [1,13–15,20]. For the formation of phenyl-substituted silyllithiums $Ph_nMe_{3-n}SiLi$ (n = 1, 2, 3) the following reaction pathway is discussed [1,6,7,10,11,13,14]: (i) rapid formation of the silyllithium, (ii) reaction of the silyllithium with more chlorosilane to give the disilane and (iii) symmetrical cleavage of the Si–Si bond of the disilane by lithium (Eq. (2)).

$$\begin{array}{c|c} Ph_{n}Me_{3-n}SiCl & \xrightarrow{+2 \text{ Li}} Ph_{n}Me_{3-n}SiLi & \xrightarrow{+Ph_{n}Me_{3-n}SiCl} Ph_{n}Me_{3-n}Si-SiMe_{3-n}Ph_{n}\\ n=1,2,3 & & \downarrow +2 \text{ Li}\\ & & & \downarrow \\ & & & 2Ph_{n}Me_{3-n}SiLi \end{array}$$

$$(2)$$

The disilanes can be isolated when the reactions are stopped at an appropriate stage. The corresponding disilane intermediates are also formed in the lithiation of 1-chloro-1,2,3,4-tetrahydro-1-phenyl-1-silanaphthalene [15] and the diethylamino-substituted chlorosilane (Et_2N)Ph₂-SiCl [20]. High steric shielding of the Si(Cl) atom in the chlorosilane can inhibit the formation of the disilane [13–15]. Thus, the reaction of chloro-tri(*o*-tolyl)silane with lithium yields the silyllithium compound without formation of a disilane [1,13].

In Ref. [24] we have assumed that the generation of the trimethylsiloxysilyllithiums $(Me_3SiO)RPhSiLi$ (R = Me,

Et, ^{*i*}Pr, ^{*t*}Bu, Ph, Mes, Tip) and (Me₃SiO)Mes₂SiLi by reductive lithiation of the corresponding trimethylsiloxychlorosilanes proceeds via a disilane intermediate. This assumption is supported by the results of the reactions of the trimethylsiloxychlorosilanes (Me₃SiO)RPhSiCl (R = ^{*t*}Bu, Mes) with lithium in a Trapp mixture at -110 °C. When the reactions have been stopped at an early stage, the disilanes (Me₃SiO)RPhSi–SiPhR(OSiMe₃) (R = ^{*t*}Bu, Mes) could be isolated. In many cases the trimethylsiloxysilyllithiums undergo self-condensation reactions affording the trimethylsiloxydisilanyllithiums (see above). These compounds could also be involved in the process of forming the trimethylsiloxysilyllithiums.

In this paper we describe the results of our studies on the mechanism of formation of the trimethylsiloxysilyllithium compounds (Me₃SiO)RR'SiLi (**2a–d**) by reductive lithiation of trimethylsiloxychlorosilanes with lithium metal in a Trapp mixture at -110 °C.

a	b	c	d
Et	^{<i>i</i>} Pr	Mes ^a	Mes
Ph	Ph	Ph	Mes
	a Et Ph	abEt ⁱ PrPhPh	abcEt ⁱ PrMes ^a PhPhPh

^a Mes: 2,4,6-Me₃C₆H₂.

2. Results and discussion

For the investigations of the mechanism of forming the trimethylsiloxysilyllithiums (Me₃SiO)RR'SiLi by reaction of the corresponding trimethylsiloxychlorosilanes (Me₃-SiO)RR'SiCl (1a-d) with lithium metal the reaction temperature -110 °C was chosen because both the yield and the stability of the trimethylsiloxysilyllithium compounds (Me₃SiO)RR'SiLi (2a-d) are relatively high at this temperature [23,24]. Furthermore, investigations are limited to those transformations of the trimethylsiloxychlorosilanes 1 with lithium in which the yields of compounds from ambiguous chemical pathways are very small [24]. That are the trimethylsilylsilyllithium derivatives Me₃SiRPhSiLi (R = Et, ^{*i*}Pr) for the reactions of the trimethylsiloxychlorosilanes (Me₃SiO)EtPhSiCl (1a) and (Me₃SiO)^{*i*}PrPhSiCl (1b) with lithium as well as the lithiumoxysilyllithiums (LiO)RMesSiLi (R = Ph, Mes) and the disilane (Me₃SiO)Mes₂Si–SiMe₃ for the reactions of (Me₃SiO)MesPhSiCl (1c) and (Me₃SiO)Mes₂SiCl (1d) with lithium [24].

For monitoring the reactions after the reaction start samples of the reaction mixture were taken out at certain time intervals and quenched with dimethylchlorosilane. The identification of the trapped products of lithiumsilanides as well as intermediates was carried out by spectroscopic methods and by using authentic compounds. The changes in amounts of various species in the reaction mixtures were determined by GC. The peak areas in the gas chromatograms serve as relative measure for the changes in amounts of the several compounds.

The reaction leading during the transformation of the two alkyl-substituted trimethylsiloxychlorosilanes (Me₃-SiO)RPhSiCl (1a: R = Et, 1b: $R = {}^{i}Pr$), of the mesitylphenyl-trimethylsiloxy-chlorosilane (Me₃SiO)MesPhSiCl (1c) and of the dimesityl-trimethylsiloxy-chlorosilane (Me₃SiO)-Mes₂SiCl (1d) with lithium (molar ratio Li: chlorosilane = 4:1) are clearly different from each other. It is most complex in the case of the reactions of the siloxychlorosilanes (Me₃SiO)RPhSiCl (1a: R = Et, 1b: $R = {}^{i}Pr$) with lithium. Beside the well-known trapping products (Me₃SiO)-RPhSi-SiMe₂H (4a: R = Et, 4b: $R = {}^{i}Pr$) and (Me₃SiO)-RPhSi-RPhSi-SiMe₂H (5a: R = Et, 5b: $R = {}^{i}Pr$) [24], formed by the reaction of the lithiumsilanides (Me₃SiO)-RPhSiLi (2a: R = Et, 2b: $R = {}^{i}Pr$) and (Me₃SiO)RPhSi-

Me₃SiO(EtPhSi)₃OSiMe₃ (IIa) ۵

(Me₃SiO)EtPhSiSiMe₂H (4a), trapping product of (Me₃SiO)EtPhSiLi (2a) 0

Me₃SiO(EtPhSi)₂SiMe₂H (5a), trapping product of Me₃SiO(EtPhSi)₂Li (3a) Δ

Fig. 1. Course of reaction of the siloxychlorosilane (Me₃SiO)EtPhSiCl (1a) with lithium metal in a Trapp mixture at -110 °C monitored by GC. For GC measurements samples of the reaction mixture were quenched with HMe₂SiCl.

Me₃SiO(ⁱPrPhSi)₃OSiMe₃ (IIb)

(Me₃SiO)^{*i*}PrPhSiSiMe₂H (**4b**), trapping product of (Me₃SiO)^{*i*}PrPhSiLi (**2b**) 0

Δ Me₃SiO(ⁱPrPhSi)₂SiMe₂H (5b), trapping product of Me₃SiO(ⁱPrPhSi)₂Li (3b)

Fig. 2. Course of reaction of the siloxychlorosilane (Me₃SiO)^{*i*}PrPhSiCl (1b) with lithium metal in a Trapp mixture at -110 °C monitored by GC. For GC measurements samples of the reaction mixture were quenched with HMe₂SiCl.

RPhSiLi (**3a**: R = Et, **3b**: $R = {}^{i}Pr$) with HMe₂SiCl, respectively, the disilanes (Me₃SiO)RPhSi–SiPhR(OSiMe₃) (**Ia**: R = Et, **Ib**: $R = {}^{i}Pr$) and trisilanes (Me₃SiO)RPhSi–SiPhR–SiPhR(OSiMe₃) (**IIa**: R = Et, **IIb**: $R = {}^{i}Pr$) were found in the quenched reaction mixtures.

In the Figs. 1 and 2 the changes of peak areas of the trimethylsiloxychlorosilanes (Me₃SiO)RPhSiCl (1a: R = Et, 1b: $R = {}^{i}Pr$), the trapping products (Me₃SiO) RPhSi–SiMe₂H (4a, 4b) of trimethylsiloxysilyllithiums (Me₃SiO)-RPhSiLi (2a, 2b), the trapping products (Me₃SiO)RPhSi–RPhSi–SiMe₂H (5a, 5b) of trimethylsiloxydisilanyllithiums Me₃SiO(RPhSi)₂Li (3a, 3b) as well as the disilanes Me₃SiO (RPhSi)₂OSiMe₃ (Ia, Ib) and the trisilanes Me₃SiO

 $(RPhSi)_3OSiMe_3$ (**Ha**, **Hb**) are shown in dependence of the reaction time t_{ret} .

The amount of the siloxychlorosilanes (Me₃SiO)RPh-SiCl (1a: R = Et, 1b: $R = {}^{i}Pr$) decreases continuously. Until an approximately 90% consumption of the chlorosilanes 1a, 1b the amounts of the trapping products (Me₃SiO)RPhSi–SiMe₂H (4a, 4b) of (Me₃SiO)RPhSiLi (2a, 2b) and the trapping products (Me₃SiO)RPhSi– RPhSi–SiMe₂H (5a, 5b) of (Me₃SiO)RPhSi–RPhSiLi (3a, 3b) are constantly low. Only at a level of about 10% for the chlorosilanes 1 (peak area in gas chromatogram) a considerable increase of the amounts of 4 and 5, trapping products of the silyllithium derivatives 2 and 3, is observed.

Scheme 1. Courses of reactions when the trimethylsiloxychlorosilanes (Me₃SiO)RR'SiCl (1) (R = Et, ^{*i*}Pr, Mes, R' = Ph; R = R' = Mes) are treated with lithium metal (4 equiv.) in THF/ Et_2O/n -pentane (volume ratio 4:1:1) at -110 °C.

Immediately from the beginning of the reaction of the chlorosilanes 1 with lithium the formation of the disilanes Me₃SiO(RPhSi)₂OSiMe₃ (Ia. Ib) and the trisilanes Me₃SiO(RPhSi)₃OSiMe₃ (IIa, IIb) occurs. In the course of reaction the amounts of the di- and trisilanes I and II increase slowly, pass through maxima still before the siloxychlorosilanes 1 are consumed completely and fall off then relatively fast. With the decrease of amounts of the intermediates I and II a clear increase of the amounts of the trapping products (Me₃SiO)RPhSi-SiMe₂H (4) of trimethylsiloxysilvllithiums 2 and (Me₃SiO)RPhSi-RPhSi- $SiMe_2H$ (5) of trimethylsiloxydisilanyllithiums 3 is connected. After complete transformation of the disilanes I and trisilanes II the amounts of the trapping products 4 and 5 of 2 and 3 do not change any longer within the monitoring period considerably. These results are arguments for the reaction pathways during the attack of excess lithium metal on the trimethylsiloxychlorosilanes (Me₃SiO)RPh-SiCl (1a: R = Et, 1b: $R = {}^{i}Pr$) summarised in Scheme 1.

The trimethylsiloxychlorosilanes $(Me_3SiO)RPhSiCl (1)$ react with lithium metal to give the corresponding trimethylsiloxysilyllithiums (Me₃SiO)RPhSiLi (2a, 2b) initially. Afterwards the trimethylsiloxysilyllithiums 2 react partially with more siloxychlorosilanes 1 to give the disilanes Me₃SiO(RPhSi)₂OSiMe₃ (Ia, Ib) as well as react under bimolecular self-condensation affording the siloxydisilanyllithiums Me₃SiO(RPhSi)₂Li (3a, 3b). The trimethylsiloxydisilanyllithiums 3 then couple with the unconsumed siloxychlorosilanes 1 to give the trisilanes Me₃SiO(RPhSi)₃ OSiMe₃ (IIa, IIb). The disilanes and trisilanes Me₃SiO- $(RPhSi)_n OSiMe_3$ (I: n = 2, II: n = 3) are cleaved by lithium to form the trimethylsiloxysilyllithiums (Me₃SiO)RPhSiLi (2a, 2b), and the trimethylsiloxydisilanyllithiums Me₃SiO-(RPhSi)₂Li (**3a**, **3b**) as well as the trimethylsiloxy silyllithiums 2a, 2b, respectively. The trimethylsiloxysilyllithiums 2 undergo partially self-condensation to yield the trimethylsiloxydisilanyllithiums 3 [24].

Presumably, the respective disilanes $Me_3SiO(RPhSi)_2$ -OSiMe₃ (R = Me, Ph) and trisilanes $Me_3SiO(RPhSi)_3$ -OSiMe₃ (R = Me, Ph) are also involved as intermediates in the formation of the trimethylsiloxysilyllithiums $(Me_3SiO)RPhSiLi$ (R = Me, Ph) and the trimethylsiloxydisilanyllithiums $Me_3SiO(RPhSi)_2Li$ (R = Me, Ph), which were obtained beside other compounds in the reaction of the corresponding trimethylsiloxychlorosilanes (Me₃SiO)-RPhSiCl (R = Me, Ph) with lithium at $-110 \degree C$ in a Trapp mixture [23,24]. Both types of compounds were clearly proved in the reaction mixture before the trimethylsiloxychlorosilanes 1 were consumed completely. In Table 1 the yields of the disilanes Me₃SiO(RPhSi)₂OSiMe₃ (I) and the respective reaction times $t_{rct}(\mathbf{I}_{max})$ between trimethylsiloxychlorosilanes 1 and lithium metal when the peak areas of the siloxydisilane intermediates I have maxima in the gas chromatograms as well as the yields of the trisilanes Me₃SiO(RPhSi)₃OSiMe₃ (II) and of the trimethylsiloxychlorosilanes 1 at these reaction times $t_{ret}(I_{max})$ are given. Extended reaction times lead to complete decomposition of the di- and trisilanes I and II (Table 1).

The reaction leading during the transformation of mesityl-phenyl-trimethylsiloxy-chlorosilane (Me₃SiO)Mes-PhSiCl (1c) with lithium metal corresponds to that of the transformation of the trimethylsiloxychlorosilanes (Me₃SiO)RPhSiCl (1a: R = Et, 1b: $R = {}^{i}Pr$) with lithium (see Fig. 3; Table 1, Scheme 1) with the exception, that no formation of a trisilane intermediate Me₃SiO(Mes-PhSi)₃OSiMe₃ and no cleavage by lithium take place.

The bimolecular reaction of the trimethylsiloxydisilanyllithium $Me_3SiO(MesPhSi)_2Li$ (3c) and the trimethylsiloxychlorosilane 1c is most probably suppressed by high steric hindrance about the Si(Li) and Si(Cl) atom.

The dimesityl-trimethylsiloxy-chlorosilane (Me₃SiO)-Mes₂SiCl (1d) reacts with lithium to give the silyllithium compound (Me₃SiO)Mes₂SiLi (2d) without formation of the disilane intermediate Me₃SiO(Mes₂Si)₂OSiMe₃ (Scheme 1). Contrary to the reactions of the trimethylsiloxychlorosilanes (Me₃SiO)RPhSiCl (1a: R = Et, 1b: R = ^{*i*}Pr, 1c: R = Mes; also R = Me, Ph) with lithium (see above) the coupling reaction of the formed silylanion 2 with more chlorosilane 1 does not take place. The reason for that is the high steric hindrance at the silicon centre of 1d and 2d. The chlorosilanes (*o*-CH₃C₆H₄)₃SiCl [1,13]

Table 1

Yields of the 1,2-bis(trimethylsiloxy)disilanes Me₃SiO(RPhSi)₂OSiMe₃ (I) and 1,3-bis(trimethylsiloxy)trisilanes Me₃SiO(RPhSi)₃OSiMe₃ (II) in the reaction mixture (formed in the reaction of siloxychlorosilanes (Me₃SiO)RPhSiCl (1a–c and R = Me, Ph) with lithium in a Trapp mixture at -110 °C) at the reaction times $t_{ret}(I_{max})$ when the peak area of the respective siloxydisilane intermediate I has a maximum in the gas chromatogram

Compound	a	b ⁱ Pr	с		Ph
	$\mathbf{R} = \mathbf{Et}$		Mes	Me	
(Me ₃ SiO)RPhSiCl (1) (%)	8	6	16	9	26
Me ₃ SiO(RPhSi) ₂ OSiMe ₃ (I) (%)	39/15	34/12	22/5	12/5	33/9
Me ₃ SiO(RPhSi) ₃ OSiMe ₃ (II) (%)	20/10	10/7	_	29/14	10/7
Reaction time, $t_{\rm rct}$					
$t_{\rm rct}(\mathbf{I}_{\rm max})$ (min)	90	45	150	65	16
$t_{\rm rct}(\mathbf{I}/\mathbf{II}_{\rm end})^{\rm a}$ (min)	120	150	270	120	60

Yield determined by GC/yield of the isolated substance.

^a Reaction time when the intermediates I and II were consumed completely.

Fig. 3. Course of reaction of the siloxychlorosilane (Me_3SiO)MesPhSiCl (1c) with lithium metal in a Trapp mixture at -110 °C monitored by GC. For GC measurements samples of the reaction mixture were quenched with HMe₂SiCl.

Me₃SiO(MesPhSi)₂SiMe₂H (5c), trapping product of Me₃SiO(MesPhSi)₂Li (3c)

and $(Et_2N)_2PhSiCl$ [20] with high steric shielding of the silicon centre react directly with lithium as well to yield exclusively the corresponding silyllithium compounds.

Δ

The intermediates Me₃SiO(RPhSi)₂OSiMe₃ (Ia: R = Et, Ib: R = ^{*i*}Pr, Ic: R = Mes; also R = Me, Ph) and Me₃SiO(RPhSi)₃OSiMe₃ (IIa: R = Et, IIb: R = ^{*i*}Pr; also R = Me, Ph) could be isolated, if the reactions of the siloxychlorosilanes 1a–c, and (Me₃SiO)RPhSiCl (R = Me, Ph) with lithium in a Trapp mixture at -110 °C were stopped at an early stage, i.e. at the reaction times $t_{rct}(I_{max})$, when the respective siloxydisilane intermediate Me₃SiO-(RPhSi)₂OSiMe₃ (I) had a maximum of peak area in the gas chromatogram.

3. Experimental

Mass spectra: Mass spectrometer Intectra AMD 402-3. GC–MS: Coupling gas chromatograph Hewlett Packard HP-5890-II – Mass spectrometer HP 59827 A. Gas chromatography: Hewlett Packard HP-5890-II, capillary column HP1 (FS, non-polar) 25 m; Chrompack CP 9002, capillary column WCOT (FS, non-polar) 24 m. NMR spectra: Bruker ARX 400 (1 H/ 13 C/ 29 Si NMR: 400.1/100.6/79.5 MHz), Bruker ARX 250 (1 H NMR: 250.1 MHz) or Bruker ARX 300 (13 C/ 29 Si NMR: 75.5/59.6 MHz); solutions of 30–50% in C₆D₆, reference C₆D₆, chemical shifts refer to $\delta_{TMS} = 0.0$ ppm. IR spectra: Nicolet 205 FT-IR, liquids as films between KBr disks. Elemental analyses: Leco Modell 932, absolute error ±0.3%.

The syntheses of the trimethylsiloxychlorosilanes 1a-d and $(Me_3SiO)RPhSiCl$ (R = Me, Ph) are described in Ref. [23] and [24]. All reactions were carried out in dry, degassed solvents under an atmosphere of argon. The sol-

vents used were dried by standard procedures and distilled under argon. Me₃SiCl and HMe₂SiCl were treated with small amounts of CaH₂ to remove traces of dissolved HCl.

The lithium wire was purchased from Aldrich (about 0.01% Na) and converted into very thin plates for the reactions.

The course of reaction of the siloxychlorosilanes 1a-d with lithium metal was monitored by GC. Samples of the reaction mixture (1.0 ml for GC and GC-MS, 2.0 ml for NMR) were taken out at certain time intervals and quenched with HMe₂SiCl. Then the received reaction mixtures were analysed by GC and additionally, selected samples of quenched mixtures by GC-MS and NMR. For the identification and determination of reaction products the trimethylsiloxydisilanes (Me₃SiO)RR'Si-SiMe₂H (4a: R = Et, 4b: $R = {}^{i}Pr$, 4c: R = Mes; 4a-c: R' = Ph; 4d: $\mathbf{R} = \mathbf{R}' = \mathbf{Mes}$), trapping products of the trimethylsiloxysilyllithiums (Me₃SiO)RR'SiLi (2a-d); the trimethylsiloxytrisilanes (Me₃SiO)RPhSi-RPhSi-SiMe₂H (**5a**: R = Et, **5b**: $R = {}^{t}Pr$, 5c: R = Mes), trapping products of trimethylsiloxydisilanyllithiums (Me₃SiO)RPhSi-RPhSiLi (**3a-c**) as well as the 1,2-bis(trimethylsiloxy)disilanes (Me₃SiO)-RPhSi-SiPhR(OSiMe₃) (Ia: R = Et, Ib: $R = {}^{i}Pr$, Ic: R =Mes; also R = Me, Ph) and the 1,3-bis(trimethylsiloxy)trisilanes (Me₃SiO)RPhSi–RPhSi–SiPhR(OSiMe₃) (IIa: R = Et, IIb: $R = {}^{i}Pr$; also R = Me, Ph) were available as pure substances [24, Section 3.2].

The compounds Ia-c, $(Me_3SiO)RPhSi-SiPhR(OSiMe_3)$ (R = Me, Ph), IIa, IIb and $(Me_3SiO)RPhSi-RPhSi-SiPhR(OSiMe_3)$ (R = Me, Ph) could be isolated by fractional distillation and were identified and characterised by their elemental analyses; mass, NMR and partially by IR spectra. The GC yields given in Table 1 are based on GC investigations of all fractions (pure and/or mixed fractions), which were obtained by work-up of the quenched reaction mixtures, under using the pure compounds Me₃SiO(RPhSi)₂- OSiMe₃ (Ia: R = Et, Ib: $R = {}^{i}Pr$, Ic: R = Mes; also R = Me, Ph) and Me₃SiO(RPhSi)₃OSiMe₃ (IIa: R = Et, IIb: $R = {}^{i}Pr$; also R = Me, Ph) as standards. The yields of the compounds isolated by distillation are clearly lower than those determined by GC because of the work-up of complex mixtures with very similar compounds.

3.1. Investigations of the course of reactions of the trimethylsiloxychlorosilanes **1a–1d** with lithium metal in a Trapp mixture at –110 °C quenching of the reaction mixtures with chlorodimethylsilane

On the analogies of the preparative work a general procedure is given for the reactions of the trimethylsiloxychlorosilanes 1a-d with lithium metal and for the quenching of samples with HMe₂SiCl. The time intervals of sampling and the peak areas of selected products in the gas chromatograms of the reaction mixtures are given in Figs. 1–3.

General procedure. A mixture of 0.14 mol very thin lithium plates and 100 ml Trapp mixture (THF/ Et_2O/n -pentane in volume ratio 4:1:1) was cooled down to -110 °C. To the mixture 0.035 mol trimethylsiloxychlorosilane 1a-1d without solvent was added within a few seconds with vigorous stirring. The vigorous stirring was continued at -110 °C. After the start of reaction samples of the reaction mixture (in most cases 1 ml per sample) were taken out at certain time intervals and quenched with HMe₂SiCl. The changes in amounts of the obtained compounds in the reaction mixtures were determined by GC. The changes in amounts of selected products (peak areas in the gas chromatograms as measure) in dependence of the reaction time $t_{\rm rct}$ are shown in Figs. 1–3. After the end of reaction monitoring by GC the excess lithium was removed. Then 0.07 mol trapping agent HMe₂SiCl was added to the reaction solution stirred at -110 °C. The reaction mixture was warmed to room temperature (20 °C) and was allowed to react for 24 h at this temperature. After completion of quenching the work-up of the reaction mixture was carried out as described in Ref. [24]. The respective spectrum of products obtained is also given in Ref. [24].

3.2. Isolation of the intermediates $(Me_3SiO)RPhSi-SiPhR(OSiMe_3)$ (Ia: R = Et, Ib: $R = {}^iPr$, Ic: R = Mes; also R = Me, Ph) and $(Me_3SiO)RPhSi-RPhSi-SiPhR(OSiMe_3)$ (IIa: R = Et, IIb: $R = {}^iPr$; also R = Me, Ph)

On the analogies of the preparative work a general procedure is given for the reactions of the trimethylsiloxychlorosilanes **1a–c** and (Me₃SiO)RPhSiCl (R = Me, Ph) with lithium metal and for the following trapping reactions with Me₃SiCl. By quenching with HMe₂SiCl (see Section 3.1) it could clearly be proved that the intermediates I. II and $Me_3SiO(RPhSi)_nOSiMe_3$ (n = 2, 3; R = Me, Ph) are bis(trimethylsiloxy)-substituted di- and trisilanes and are not possible silanolates such as Me₃SiO(RPhSi)_nOLi (n = 2, 3) or LiO(RPhSi)_nOLi (n = 2, 3). The corresponding trapping products $Me_3SiO(RPhSi)_nOSiMe_2H$ (n = 2, 3) or HMe₂SiO(RPhSi)_nOSiMe₂H (n = 2, 3) were not found in the reaction mixtures. Thus Me₃SiCl could also be used as trapping agent. The work-up of the crude products is described separately. Some details of the reactions are given in Scheme 1 and in Table 1. About the isolation of the siloxydisilane (Me₃SiO)MesPhSi–SiPhMes(OSiMe₃) (Ic) from the reaction of the trimethylsiloxychlorosilane (Me₃SiO)MesPhSiCl (1c) with lithium was reported in Ref. [24].

3.2.1. General procedure

A mixture of 0.14 mol very thin lithium plates and 70 ml Trapp mixture $(THF/Et_2O/n-pentane in volume ratio)$ 4:1:1) was cooled down to -110 °C. To the respective mixture 0.035 mol trimethylsiloxychlorosilane 1a-c and $(Me_3SiO)RPhSiCl (R = Me, Ph)$, dissolved in 30 ml Trapp mixture, was added dropwise within 15 min with vigorous stirring. The reaction progress was monitored by GC of samples quenched with HMe₂SiCl. The vigorous stirring was continued at -110 °C until the peak areas of the siloxydisilane intermediates I and (Me₃SiO)RPhSi-SiR- $Ph(OSiMe_3)$ (R = Me, Ph) in the gas chromatograms of the reaction mixture had a maximum. After the reaction times $t_{rct}(I_{max})$ as given in Table 1 the excess lithium was removed. Then 0.07 mol trapping agent Me₃SiCl was added to the solution of lithium silanides stirred at -110 °C. The reaction mixture was warmed to room temperature within 30 min and was allowed to react for 24 h at the same temperature. Subsequently, the solvent and excess trapping agent were removed under reduced pressure at room temperature and 50 ml n-pentane were added to the residue. The resulting suspension was filtered, and the solvent of the filtrate was evaporated under reduced pressure. The respective residue was distilled in vacuo below 0.3 Torr. Beside the di- and trisilanes I, II and $Me_3SiO(RPhSi)_nOSiMe_3$ (n = 2, 3; R = Me, Ph) also the compounds were obtained, which are given for the corresponding reactions of trimethylsiloxychlorosilanes 1 and $(Me_3SiO)RPhSiCl (R = Me, Ph)$ with lithium in Ref. [24] and [23].

3.2.2. Isolation of the siloxydisilanes **Ia** and **IIa** from the reaction of **1a** with lithium

Distillation of the residue through a slit pipe column (Fischer, Mikro-Spaltrohr-System D100) (30–144 °C/0.05 Torr) yielded three fractions (30–45 °C, 45–85 °C, 85–142 °C), which contained mixtures of **1a**, (Me₃SiO)₂SiEtPh, Me₃SiO(EtPhSi)_nSiMe₃ (n = 1, 2), Me₃SiEtPhSiSiMe₃ [24] and **Ia** in different proportions. In the fourth fraction

(143–144 °C/0.05 Torr) pure disilane **Ia** was found. In the distillation residue the trisilanes **IIa** and minor **Ia** remained. By distillation of the residue using a ball tube oven (Büchi, Kugelrohrofen GKR-51) the trisilane **IIa** was isolated (185–190 °C/0.06 Torr).

1,2-Bis(trimethylsiloxy)-1,2-diethyl-1,2-diphenyl-disilane (Ia): Yield: 1.2 g (15%). B.p.: 143–144 °C/0.05 Torr. GC: Diastereomeric ratio 1.2:1. MS (EI, 70 eV): m/z(%) = 446 (5) [M]⁺, 431 (3) [M–Me]⁺, 417 (31) [M–Et]⁺, 373 (91) [M–SiMe₃]⁺, 223 (66) [Me₃SiOSiEtPh]⁺, 195 (100), 135 (34), 73 (16) [SiMe₃]⁺. ¹H NMR: $\delta = 0.05$, 0.07 (s, Me₃SiO, 18H); 0.80, 0.82 (q, H₂C, 4H); 1.04, 1.07 (t, H₃C, 6H); 7.10–7.67 (m, Ph, 10H) ppm. ¹³C NMR: $\delta = 2.1$, 2.1 (Me₃SiO); 7.3, 7.3 (CH₃); 10.1, 10.1 (CH₂); 128.1, 128.1, 129.4, 129.4, 133.8, 133.9, 139.3, 139.5 (Ph) ppm. ²⁹Si NMR: $\delta = -8.54$, -8.51 (SiEtPh); 8.6, 8.7 (OSiMe₃) ppm. IR(film): $\tilde{\nu}$ (SiOSi) 1058, δ (CH₃Si) 1251 cm⁻¹. Anal. Calc. for C₂₂H₃₈O₂Si₄ (446.891): C, 59.13; H, 8.57. Found: C, 58.94; H, 8.62%.

1,3-Bis(trimethylsiloxy)-1,2,3-triethyl-1,2,3-triphenyl-trisilane (**IIa**): Yield: 0.7 g (10%). B.p.: 185–190 °C/ 0.06 Torr. GC: Diastereomeric ratio 2:1:1. MS (EI, 70 eV): m/z (%) = 580 (0.5) [M]⁺, 565 (3) [M–Me]⁺, 491 (8) [M–OSiMe₃]⁺, 357 (6) [Me₃SiO(EtPhSi)₂]⁺, 223 (94) [Me₃SiOSiEtPh]⁺, 195 (100), 135 (23), 73 (8) [SiMe₃]⁺. ¹H NMR: $\delta = 0.02$, 0.03, 0.04 (s, Me₃SiO, 18H); 0.76–1.19 (H₃CH₂C, 15H); 7.08–7.55 (m, Ph, 15H) ppm. ¹³C NMR: $\delta = 2.2$, 2.2, 2.3 (Me₃SiO); 3.1, 3.3, 3.7, 11.0, 11.1, 11.2 (CH₂); 7.3, 7.3, 7.4, 10.3, 10.4, 10.6 (CH₃); 127.9–139.8 (Ph) ppm. ²⁹Si NMR: $\delta = -46.3$, -46.2, -46.1 (SiEt-SiPhSi); -1.6, -1.42, -1.39 (EtSiPhO); 8.4, 8.4, 8.5 (OSiMe₃) ppm. IR(film): $\tilde{\nu}$ (SiOSi) 1058, δ (CH₃Si) 1251 cm⁻¹. Anal. Calc. for C₃₀H₄₈O₂Si₅ (581.143): C, 62.00; H, 8.33. Found: C, 61.87; H, 8.41%.

3.2.3. Isolation of the siloxydisilanes **Ib** and **Ib** from the reaction of **1b** with lithium

Distillation of the residue through a Fischer slit pipe column (45–158 °C/0.05 Torr) yielded three fractions (45– 60 °C, 60–80 °C, 80–156 °C), which consisted of mixtures of **1b**, (Me₃SiO)₂Si'PrPh, Me₃SiO('PrPhSi)_nSiMe₃ (n = 1, 2), Me₃Si'PrPhSiSiMe₃ [24] and **Ib** in different proportions. The fourth fraction (157–158 °C/0.05 Torr) contained pure disilane **Ib**. In the distillation residue the trisilanes **IIb** and minor **Ib** remained. Distillation of the residue using a Büchi ball tube oven (195–200 °C/0.02 Torr) yielded pure trisilane **IIb**.

1,2-Bis(trimethylsiloxy)-1,2-di-iso-propyl-1,2-diphenyl-di silane (**Ib**): Yield: 1.0 g (12%). B.p.: 157–158 °C/0.05 Torr. GC: Diastereomeric ratio 1.3:1. MS (EI, 70 eV): m/z (%) = 474 (7) [M]⁺, 459 (4) [M–Me]⁺, 431 (100) [M–ⁱPr]⁺, 401 (16) [M–SiMe₃]⁺, 237 (52) [Me₃SiOSiⁱPrPh]⁺, 193 (44) [M/2–C₃H₈]⁺, 135 (78), 73 (30) [SiMe₃]⁺. ¹H NMR: $\delta = 0.18$, 0.19 (s, Me₃SiO, 18H); 0.87, 0.89 (d, Me₂C, 12H); 1.06, 1.22 (sept, HC, 2H); 7.13–7.70 (m, Ph, 10H) ppm. ²⁹Si NMR: $\delta = -7.9$, -7.4 (Si ⁱPrPh); 7.9, 8.0 (OSiMe₃) ppm. IR(film): $\tilde{\nu}$ (SiOSi) 1053, δ (CH₃Si) 1252 cm⁻¹. Anal. Calc. for $C_{24}H_{42}O_2Si_4$ (474.943): C, 60.69; H, 8.91. Found: C, 60.56; H, 8.78%.

1,3-Bis(trimethylsiloxy)-1,2,3-tri-iso-propyl-1,2,3-triphenyl-trisilane (**IIb**): Yield: 0.5 g (7%). B.p.: 195–200 °C/ 0.02 Torr. GC: Diastereomeric ratio 2:1:1. MS (EI, 70 eV): m/z (%) = 622 (4) [M]⁺, 607 (17) [M–Me]⁺, 579 (26) [M–ⁱPr]⁺, 533 (68) [M–OSiMe₃]⁺, 237 (100) [Me₃SiOSiⁱPrPh]⁺, 193 (52) [Me₃SiOSiⁱPrPh–C₃H₈]⁺, 135 (35), 73 (11) [SiMe₃]⁺. ¹H NMR: δ = 0.14, 0.16, 0.19 (s, Me₃SiO, 18H); 0.84–1.81 (Me₂C and HC, 21H); 7.11– 7.76 (m, Ph, 15H) ppm. ²⁹Si NMR: δ = -41.2, -41.0, -40.4 (SiⁱPrSiPhSi); -0.1, -0.3, -0.6 (ⁱPrSiPhO); 8.0, 8.1, 8.2 (OSiMe₃) ppm. IR(film): $\tilde{\nu}$ (SiOSi) 1055, δ (CH₃Si) 1252 cm⁻¹. Anal. Calc. for C₃₃H₅₄O₂Si₅ (623.224): C, 63.60; H, 8.73. Found: C, 63.69; H, 8.67%.

3.2.4. Isolation of the siloxydisilanes (Me₃SiO)MePhSi– SiPhMe(OSiMe₃) and (Me₃SiO)MePhSi–MePhSi– SiPhMe(OSiMe₃) from the reaction of (Me₃SiO)MePhSiCl with lithium

Distillation of the residue through a Fischer slit pipe column in the temperature range of 50-150 °C/0.2Torr yielded four fractions (50-75 °C, 75-90 °C, 90-120 °C, 120-148 °C), which consisted of mixtures of (Me₃SiO)-MePhSiCl, (Me₃SiO)₂SiMePh, Me₃SiO(MePhSi)_nSiMe₃ (n = 1, 2), Me₃SiMePhSiSiMe₃ [23] and Me₃SiO(MePhSi)₂-OSiMe₃ in different proportions. The fifth fraction (149-150 °C/0.2 Torr) contained pure disilane Me₃SiO(MePh-Si)₂OSiMe₃. In the distillation residue the trisilanes Me₃SiO(MePhSi)₃OSiMe₃ and small amounts of Me₃SiO-(MePhSi)₂OSiMe₃ remained. By distillation of the residue using a Büchi ball tube oven the trisilane Me₃SiO-(MePhSi)₃OSiMe₃ was isolated (150-153 °C/0.05 Torr).

1,2-Bis(trimethylsiloxy)-1,2-dimethyl-1,2-diphenyl-disilane: Yield: 0.4 g (5%). B.p.: 149–150 °C/0.2 Torr. GC: Diastereomeric ratio 1.1:1. MS (EI, 70 eV): m/z(%) = 418 (1) [M]⁺, 403 (2) [M–Me]⁺, 345 (39) [M–SiMe₃]⁺, 209 (100) [Me₃SiOSiMePh]⁺, 193 (43) [Me₃SiOSiMePh–CH₄]⁺, 135 (39), 73 (20) [SiMe₃]⁺. ¹H NMR: $\delta = 0.08$, 0.09 (s, Me₃SiO, 18H); 0.508, 0.511 (s, MeSi, 6H); 7.14–7.61 (m, PhSi, 10H) ppm. ¹³C NMR: $\delta = 0.9$, 1.0 (MeSi); 2.20, 2.24 (Me₃SiO); 128.07, 128.10, 129.42, 129.44, 133.59, 133.63, 140.1, 140.2 (Ph) ppm. ²⁹Si NMR: $\delta = -10.0$, -9.9 (SiMePh); 9.3, 9.4 (OSiMe₃) ppm. IR(film): $\tilde{\nu}$ (SiOSi) 1048; δ (CH₃Si) 1252, 1261 cm⁻¹. Anal. Calc. for C₂₀H₃₄O₂Si₄ (418.837): C, 57.35; H, 8.18. Found: C, 57.46; H, 8.36%.

1,3-Bis(trimethylsiloxy)-1,2,3-trimethyl-1,2,3-triphenyltrisilane: Yield: 0.9 g (14%). B.p.: 150–153 °C/0.05 Torr. GC: Diastereomeric mixture. MS (EI, 70 eV): m/z(%) = 538 (2) [M]⁺, 523 (3) [M–Me]⁺, 465 (2) [M–SiMe₃]⁺, 329 (9) [Me₃SiOSiMePhSiMePh]⁺, 313 (24) [M–SiMePhOSiMe₃–CH₄]⁺, 252 (35) [M–SiMePhOSi-Me₃–Ph]⁺, 209 (93) [Me₃SiOSiMePh]⁺, 193 (100) [Me₃SiOSiMePh–CH₄]⁺, 135 (39), 73 (11) [SiMe₃]⁺. ¹H NMR: δ = 0.04, 0.06, 0.08 (s, Me₃SiO, 18H); 0.48, 0.49, 0.50, 0.53, 0.54, 0.57 (s, MeSiPh, 9H); 7.10–7.58 (m, PhSi, 15H) ppm. ¹³C NMR: $\delta = -8.5$, -8.2, -7.9 (Si*Me*SiPhSi); 1.8, 1.9, 2.0 (*Me*SiPhO); 2.2, 2.3, 2.3 (Me₃SiO); 128.0–140.7 (Ph) ppm. ²⁹Si NMR: $\delta = -52.2$, -51.9, -51.7 (SiMe-*Si*PhSi); -3.1, -3.0, -2.7 (MeSiPhO); 9.3, 9.4, 9.5 (OSiMe₃) ppm. IR(film): \tilde{v} (SiOSi) 1049; δ (CH₃Si) 1248, 1252, 1261 cm⁻¹. Anal. Calc. for C₂₇H₄₂O₂Si₅ (539.065): C, 60.16; H, 7.85. Found: C, 60.20; H, 8.02%.

3.2.5. Isolation of the siloxydisilanes (Me₃SiO)Ph₂Si– SiPh₂(OSiMe₃) and (Me₃SiO)Ph₂Si–Ph₂Si– SiPh₂(OSiMe₃) from the reaction of (Me₃SiO)Ph₂SiCl with lithium

Distillation of the residue through a Fischer slit pipe column (70-140 °C/0.03 Torr) yielded several fractions (70-140 °C), which obtained mixtures of (Me₃SiO)Ph₂SiCl, (Me₃SiO)₂SiPh₂, $Me_3SiO(Ph_2Si)_nSiMe_3$ (n = 1,2), Me₃SiPh₂SiSiMe₃ [23] and Me₃SiO(Ph₂Si)₂OSiMe₃ in different proportions. In the distillation residue Me₃SiO-Me₃SiO(Ph₂Si)₃OSiMe₃ (Ph₂Si)₂OSiMe₃. and small amounts of Me₃SiO(Ph₂Si)₂SiMe₃ remained. By distillation of the residue using a Büchi ball tube oven (180–250 °C/ 0.05 Torr) the disilane Me₃SiO(Ph₂Si)₂OSiMe₃ (200–205 °C/0.05 Torr) and the trisilane Me₃SiO(Ph₂Si)₃OSiMe₃ (245–250 °C/0.05 Torr) were isolated.

1,2-Bis(trimethylsiloxy)-1,1,2,2-tetraphenyl-disilane: Yield: 0.9 g (9%). B.p.: 200–205 °C/0.05 Torr. MS (EI, 70 eV): m/z (%) = 542 (8) [M]⁺, 527 (2) [M–Me]⁺, 469 (34) [M–SiMe₃]⁺, 271 (80) [Me₃SiOSiPh₂]⁺, 193 (100) [M/2– C₆H₆]⁺, 135 (20), 73 (6) [SiMe₃]⁺. ¹H NMR: $\delta = 0.11$ (s, Me₃SiO, 18H), 7.12–7.76 (m, Ph, 20H) ppm. ¹³C NMR: $\delta = 2.2$ (Me₃SiO); 128.1, 129.9, 135.1, 138.4 (Ph) ppm. ²⁹Si NMR: $\delta = -18.7$ (SiPh₂), 10.5 (OSiMe₃) ppm. IR (film): $\tilde{\nu}$ (SiOSi) 1041, δ (CH₃Si) 1253 cm⁻¹. Anal. Calc. for C₃₀H₃₈O₂Si₄ (542.977): C, 66.36; H, 7.05. Found: C, 66.30; H, 7.17%.

1,3-Bis(trimethylsiloxy)-1,1,2,2,3,3-hexaphenyl-trisilane: Yield: 0.6 g (7%). B.p.: 245–250 °C/0.05 Torr. MS (EI, 70 eV): m/z (%) = 724 (5) [M]⁺, 709 (2) [M–Me]⁺, 574 (2) [M–SiMe₃–Ph]⁺, 453 (9) [Me₃SiOSiPh₂SiPh₂]⁺, 376 (45) [Me₃SiOSiPh₂SiPh]⁺, 271 (100) [Me₃SiOSiPh₂]⁺, 193 (92) [Me₃SiOSiPh₂–C₆H₆]⁺, 135 (9), 73 (5) [SiMe₃]⁺. ¹H NMR: $\delta = 0.06$ (s, Me₃SiO, 18H), 7.11–7.82 (m, Ph, 30H) ppm. ¹³C NMR: $\delta = 2.3$ (Me₃SiO); 128.0, 128.1, 129.1, 129.7, 134.6, 135.2, 137.5, 138.5 (Ph) ppm. ²⁹Si NMR: $\delta = -48.5$ (SiSiPh₂Si), -12.0 (OSiPh₂), 10.8 (OSiMe₃) ppm. IR(film): $\tilde{\nu}$ (SiOSi) 1043, δ (CH₃Si) 1251 cm⁻¹. Anal. Calc. for $C_{42}H_{48}O_2Si_5$ (725.275): C, 69.55; H, 6.67. Found: C, 69.79; H, 6.83%.

Acknowledgement

We thank the Fonds der Chemischen Industrie for the material support of this work.

References

- H. Gilman, H.J.S. Winkler, in: H. Zeiss (Ed.), Organometallic Chemistry, Reinhold Publishing Corporation, New York, 1960, p. 270.
- [2] D.D. Dennis, C.E. Gray, Organomet. Chem. Rev. A 6 (1970) 283.
- [3] I. Fleming, in: D. Barton, W.D. Ollis (Eds.), Comprehensive Organic Chemistry, vol. 3, Pergamon, Oxford, 1979, p. 541.
- [4] E.W. Colvin, Silicon in Organic Synthesis, Krieger Publishing Company, Malabar, FL, 1985.
- [5] J.B. Lambert, W.J. Schulz Jr., in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic Silicon Compounds, Wiley, Chichester, 1989, p. 1007.
- [6] P.D. Lickiss, C.M. Smith, Coord. Chem. Rev. 145 (1995) 75.
- [7] K. Tamao, A. Kawachi, Adv. Organomet. Chem. 38 (1995) 1.
- [8] N. Wiberg, Coord. Chem. Rev. 163 (1997) 217.
- [9] A. Kawachi, K. Tamao, Bull. Chem. Soc. Jpn. 70 (1997) 945.
- [10] J. Belzner, U. Dehnert, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of Organic Silicon Compounds, vol. 2, Wiley, Chichester, 1998, p. 779.
- [11] A. Sekiguchi, V.Y. Lee, M. Nanjo, Coord. Chem. Rev. 210 (2000) 11.
- [12] H.-W. Lerner, Coord. Chem. Rev. 249 (2005) 781.
- [13] M.V. George, D.J. Peterson, H. Gilman, J. Am. Chem. Soc. 82 (1960) 403.
- [14] I. Fleming, R.S. Roberts, S.C. Smith, J. Chem. Soc. Perkin Trans. 1 (1998) 1209.
- [15] M. Oesterreich, G. Auer, M. Keller, Eur. J. Org. Chem. (2005) 184.
- [16] H. Gilman, W. Steudel, Chem. Ind. (London) (1959) 1094.
- [17] M. Weidenbruch, K. Kramer, K. Peters, H.G. von Schnering, Z. Naturforsch. B 40 (1985) 601.
- [18] D.M. Roddick, R.H. Heyn, T.D. Tilley, Organometallics 8 (1989) 324.
- [19] K. Tamao, A. Kawachi, J. Am. Chem. Soc. 114 (1992) 3989.
- [20] C. Strohmann, O. Ulbrich, D. Auer, Eur. J. Inorg. Chem. (2001) 1013.
- [21] K. Tamao, A. Kawachi, Organometallics 15 (1996) 4653.
- [22] I. Rietz, E. Popowski, H. Reinke, M. Michalik, J. Organomet. Chem. 556 (1998) 67.
- [23] J. Harloff, E. Popowski, H. Fuhrmann, J. Organomet. Chem. 592 (1999) 1.
- [24] J. Harloff, E. Popowski, H. Reinke, J. Organomet. Chem. 692 (2007) 1421.
- [25] N. Wiberg, K. Amelunxen, H.-W. Lerner, W. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 542 (1997) 1.
- [26] K. Tamao, A. Kawachi, Y. Ito, Organometallics 12 (1993) 580.